organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1,3-Benzodioxole-5-carbaldehyde 4-nitrophenylhydrazone

Zhi-Gang Yin,* Heng-Yu Qian, Hu Jie and Feng Yu-Li

Key Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: yinzhigang3141@yahoo.com.cn

Received 12 October 2007; accepted 19 October 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.088; data-to-parameter ratio = 8.7.

In the title compound, $C_{14}H_{11}N_3O_4$, the two benzene rings are nearly coplanar, making a dihedral angle of 5.2 (16)°. The crystal packing is consolidated by intermolecular N-H···O hydrogen bonding.

Related literature

For general background, see: Okabe et al. (1993). For related structures, see: Shan et al. (2002, 2003).

Experimental

Crystal data

C14H11N3O4 $M_r = 285.26$ Orthorhombic, Pca2, a = 23.719(3) Å b = 4.9052 (18) Å c = 12.353 (2) Å

V = 1437.2 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 291 (2) K $0.30 \times 0.26 \times 0.24 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-1687 independent reflections detector diffractometer 1316 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.062$ Absorption correction: none 14432 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.088$	independent and constrained
S = 1.07	refinement
1687 reflections	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
194 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O4^{i}$	0.82 (4)	2.30 (4)	3.110 (4)	171 (3)
		1		

Symmetry code: (i) $-x + \frac{3}{2}, y - 1, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors express their deep appreciation to the Startup Fund for PhDs of Natural Scientific Research of Zhengzhou University of Light Industry, China (No. 2005001), and the Startup Fund for Masters of Natural Scientific Research of Zhengzhou University of Light Industry, China (000455).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2338).

References

Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680. Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.

Shan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, 01333o1335.

supplementary materials

Acta Cryst. (2007). E63, o4406 [doi:10.1107/S1600536807051719]

(E)-1,3-Benzodioxole-5-carbaldehyde 4-nitrophenylhydrazone

Z.-G. Yin, H.-Y. Qian, H. Jie and F. Yu-Li

Comment

4-Nitrophenylhydrazine has applications in organic synthesis and some of its derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe *et al.*, 1993). As a continuation of this work, we report here the crystal structure of the title compound.

The structure of the title compound is shown in Fig. 1, Selected bond lengths and angles are listed in Table 1. The C6—C1 and C6—C5 bond, close to the imino group, are longer than other aromatic C—C bonds in the same benzene ring, which are consistent with the reported by Shan *et al.* (2002, 2003).

The title molecule crystallizes in the E conformation, with an N2—N1—C7—C1 torsion angle of -176.6 (3)°. The two benzene rings make a dihedral angle of 5.2 (16)°.

The intermolecular N—H…O hydrogen bonding (Table 2) helps to stabilize the crystal structure (Fig. 2).

Experimental

4-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous methanol, H_2SO_4 (98% 0.5 ml) was added to this, the mixture was stirred for several minutes at 351 K, 1,3-Benzodioxole-5-carbaldehyde (1 mmol, 0.150 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized in dichloromethane, brown single crystals of the title compound were obtained after 2 d.

Refinement

Imino H atom was located in a difference Fourier map and positional parameters were refined, $U_{iso}(H) = 1.2U_{eq}(N)$. Other H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene), and refined in riding mode with $U_{iso}(H)=1.2U_{eq}(C)$. Friedel pairs were merged.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radii.

Fig. 2. Packing of (I), showing the intermolecular hydrogen bonds as dashed lines.

(E)-1,3-Benzodioxole-5-carbaldehyde 4-nitrophenylhydrazone

$C_{14}H_{11}N_{3}O_{4}$	$F_{000} = 592$
$M_r = 285.26$	$D_{\rm x} = 1.318 {\rm ~Mg~m^{-3}}$
Orthorhombic, <i>Pca</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 1143
a = 23.719(3) Å	$\theta = 2.1 - 25.6^{\circ}$
b = 4.9052 (18) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 12.353 (2) Å	T = 291 (2) K
V = 1437.2 (6) Å ³	Block, brown
Z = 4	$0.30\times0.26\times0.24~mm$

reflections

Data collection

Bruker SMART APEX CCD area-detector diffractometer	1316 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\text{int}} = 0.062$
Monochromator: graphite	$\theta_{\text{max}} = 27.4^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.4^{\circ}$
φ and ω scans	$h = -30 \rightarrow 29$
Absorption correction: none	$k = -6 \rightarrow 6$
14432 measured reflections	$l = -15 \rightarrow 15$
1687 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.051$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.04P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.088$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
1687 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
194 parameters	Extinction correction: none
1 restraint	
Determined and the location of the termined finance	

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 0.0355 (7) C1 0.97237 (14) -0.2533(5)0.2885(3)H10.9499 -0.24480.3502 0.043* C2 1.01832 (13) 0.2850(3) 0.0405 (8) -0.4287(7)H2 1.0268 0.3446 0.049* -0.5372C3 1.05156 (14) -0.4423(7)0.1928 (3) 0.0422 (8) C4 1.03942 (13) -0.2802(7)0.1041(3)0.0443(8)C5 0.99349 (14) -0.1041(7)0.1062(3)0.0427 (8) Н5 0.0034 0.0463 0.051* 0.9851 C6 0.95999 (13) -0.0902(6)0.1992(3)0.0350(7)C7 0.91205 (14) 0.0874(7) 0.2049 (3) 0.0452 (8) H70.8909 0.0741 0.2680 0.054* C8 1.11926 (16) -0.5179(8)0.0645 (3) 0.0512 (9) H8A 1.1557 -0.43020.0722 0.061* H8B 1.1232 0.0161 0.061* -0.6724C9 0.82653 (14) 0.6057(7) 0.0746 (3) 0.0415 (8) C10 0.85405 (17) -0.0236(3)0.0464 (9) 0.6553 (7) H10 0.056* 0.8865 0.5586 -0.0414C11 -0.0950(3)0.0410 (8) 0.83259 (14) 0.8510(6) H11 0.8513 0.8880 -0.15960.049* C12 0.9903 (7) 0.0392 (8) 0.78322 (13) -0.0692(3)C13 0.75576 (14) 0.9381 (6) 0.0283 (3) 0.0360(7) H13 0.7229 1.0317 0.0456 0.043* C14 0.77741 (13) 0.7470 (8) 0.0995 (3) 0.0473 (9) H14 0.7129 0.1646 0.057* 0.7590 N1 0.89330(11) 0.2693 (6) 0.1327 (2) 0.0411 (7) N2 0.84735 (12) 0.4281 (5) 0.1523 (2) 0.0346 (6) H2A 0.8303 (14) 0.416 (7) 0.210(3) 0.042* N3 0.76391 (11) 1.2097 (5) -0.1526 (2) 0.0377 (6) 01 1.09794 (10) 0.1701 (2) 0.0479 (6) -0.6063(5)O2 1.07755 (9) -0.3256(4)0.0227(2)0.0419 (5) 03 0.78600 (10) 1.2221 (4) -0.23909(18)0.0416 (6) 04 0.71404 (9) 1.3080 (5) -0.1304(2)0.0454 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0421 (19)	0.0279 (13)	0.0365 (17)	-0.0115 (12)	-0.0002 (14)	-0.0008 (13)
C2	0.0315 (17)	0.0506 (19)	0.039 (2)	-0.0092 (15)	-0.0065 (14)	0.0090 (15)
C3	0.0454 (19)	0.0382 (18)	0.043 (2)	0.0026 (14)	-0.0013 (16)	0.0078 (16)
C4	0.0420 (19)	0.0357 (17)	0.055 (2)	-0.0038 (14)	0.0117 (17)	0.0213 (16)
C5	0.0334 (19)	0.053 (2)	0.042 (2)	-0.0006 (14)	-0.0035 (15)	0.0153 (17)
C6	0.0373 (17)	0.0304 (14)	0.0372 (18)	-0.0116 (12)	-0.0058 (15)	-0.0018 (14)
C7	0.0354 (18)	0.056 (2)	0.044 (2)	-0.0034 (15)	-0.0021 (16)	0.0095 (17)
C8	0.054 (2)	0.0439 (19)	0.056 (2)	0.0059 (17)	0.0079 (17)	0.0071 (17)
C9	0.0350 (17)	0.0442 (18)	0.045 (2)	-0.0027 (14)	0.0084 (15)	0.0062 (16)
C10	0.067 (2)	0.0361 (16)	0.037 (2)	0.0120 (16)	0.0168 (18)	-0.0051 (15)
C11	0.0433 (18)	0.0350 (17)	0.045 (2)	-0.0080 (14)	0.0096 (15)	0.0024 (15)
C12	0.0322 (16)	0.0409 (17)	0.0444 (19)	-0.0121 (14)	-0.0005 (16)	0.0025 (14)
C13	0.0408 (18)	0.0266 (13)	0.0407 (19)	-0.0054 (13)	0.0035 (15)	-0.0078 (15)
C14	0.0349 (18)	0.048 (2)	0.059 (2)	-0.0019 (14)	0.0173 (16)	0.0171 (17)
N1	0.0356 (14)	0.0468 (15)	0.0409 (16)	-0.0009 (13)	0.0149 (12)	0.0120 (13)
N2	0.0391 (16)	0.0358 (13)	0.0290 (14)	-0.0037 (12)	0.0019 (11)	-0.0101 (12)
N3	0.0377 (16)	0.0385 (14)	0.0369 (17)	-0.0112 (11)	-0.0082 (14)	-0.0055 (12)
O1	0.0472 (15)	0.0455 (13)	0.0509 (16)	0.0054 (10)	-0.0010 (12)	0.0072 (11)
O2	0.0417 (13)	0.0405 (12)	0.0436 (13)	-0.0056 (10)	0.0021 (11)	0.0026 (11)
O3	0.0494 (13)	0.0406 (12)	0.0346 (14)	0.0218 (10)	-0.0060 (12)	-0.0059 (10)
O4	0.0431 (13)	0.0433 (12)	0.0497 (15)	-0.0070 (10)	0.0105 (12)	0.0169 (12)

Geometric parameters (Å, °)

C1—C2	1.389 (5)	C8—H8B	0.9700
C1—C6	1.394 (5)	C9—N2	1.388 (4)
C1—H1	0.9300	C9—C14	1.390 (5)
C2—C3	1.387 (5)	C9—C10	1.399 (5)
С2—Н2	0.9300	C10-C11	1.399 (5)
C3—C4	1.385 (5)	С10—Н10	0.9300
C3—O1	1.392 (4)	C11—C12	1.393 (5)
C4—O2	1.371 (4)	C11—H11	0.9300
C4—C5	1.391 (5)	C12—C13	1.393 (4)
C5—C6	1.399 (5)	C12—N3	1.558 (4)
С5—Н5	0.9300	C13—C14	1.384 (5)
C6—C7	1.434 (4)	С13—Н13	0.9300
C7—N1	1.338 (4)	C14—H14	0.9300
С7—Н7	0.9300	N1—N2	1.361 (4)
C8—O2	1.461 (4)	N2—H2A	0.82 (4)
C8—O1	1.464 (5)	N3—O3	1.192 (4)
C8—H8A	0.9700	N3—O4	1.307 (3)
C2—C1—C6	119.8 (3)	N2—C9—C14	117.2 (3)
C2—C1—H1	120.1	N2	122.9 (3)
С6—С1—Н1	120.1	C14—C9—C10	119.8 (3)

C3—C2—C1	120.1 (3)	C9—C10—C11	119.7 (3)
С3—С2—Н2	120.0	С9—С10—Н10	120.1
C1—C2—H2	120.0	C11—C10—H10	120.1
C4—C3—C2	120.3 (3)	C12—C11—C10	119.9 (3)
C4—C3—O1	109.7 (3)	C12—C11—H11	120.1
C2—C3—O1	130.0 (3)	C10-C11-H11	120.1
O2—C4—C3	110.5 (3)	C11—C12—C13	120.1 (3)
O2—C4—C5	129.1 (3)	C11—C12—N3	115.8 (3)
C3—C4—C5	120.3 (3)	C13—C12—N3	124.1 (3)
C4—C5—C6	119.4 (3)	C14—C13—C12	120.0 (3)
С4—С5—Н5	120.3	C14—C13—H13	120.0
С6—С5—Н5	120.3	С12—С13—Н13	120.0
C1—C6—C5	120.2 (3)	C13—C14—C9	120.5 (3)
C1—C6—C7	118.5 (3)	C13—C14—H14	119.8
C5—C6—C7	121.3 (3)	C9—C14—H14	119.8
N1—C7—C6	129.5 (3)	C7—N1—N2	121.9 (3)
N1—C7—H7	115.2	N1—N2—C9	121.4 (3)
С6—С7—Н7	115.2	N1—N2—H2A	121 (2)
O2—C8—O1	105.8 (3)	C9—N2—H2A	118 (2)
O2—C8—H8A	110.6	O3—N3—O4	124.6 (3)
O1—C8—H8A	110.6	O3—N3—C12	119.9 (3)
O2—C8—H8B	110.6	O4—N3—C12	112.5 (2)
O1—C8—H8B	110.6	C3—O1—C8	106.4 (2)
H8A—C8—H8B	108.7	C4—O2—C8	107.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots A$
N2—H2A····O4 ⁱ	0.82 (4)	2.30 (4)	3.110 (4)	171 (3)
Symmetry codes: (i) $-x+3/2$, $y-1$, $z+1/2$.				

